AWSKRUG Meetup (9/9/2020)

1. Hands-On ML Chapter 6 - ๊ฒฐ์ • ํŠธ๋ฆฌ

๋ฐœํ‘œ์ž: 11๋ฒˆ๊ฐ€ ์ด์ฃผ๊ฒฝ๋‹˜

1-2. ๋ฐœํ‘œ๋ฅผ ๋“ค์œผ๋ฉฐ ์ƒˆ๋กญ๊ฒŒ ์•Œ๊ฒŒ ๋œ ์ 

๊ฒฐ์ • ํŠธ๋ฆฌ ํ•™์Šต๊ณผ ์‹œ๊ฐํ™”

  • Logistic regression, SVM (Support Vector Machine) ์€ ์„ ํ˜•๋ชจ๋ธ ์˜ ๊ฐ ํŠน์ง•๋ณ„ ๊ฐ€์ค‘์น˜ ๋ฅผ ํ•™์Šตํ•˜๋Š” ๋ฐฉ์‹

  • Tree ๋ฅผ ๋งŒ๋“ค๊ธฐ ์œ„ํ•œ ๊ฐ ํŠน์ง•๋ณ„ ์กฐ๊ฑด์„ ํ•™์Šตํ•œ๋‹ค!

Decision Tree์˜ ์ง€๋‹ˆ ๋ถˆ์ˆœ๋„ (Gini Impurity) ๋ž€?

  • ์ง€๋‹ˆ ๋ถˆ์ˆœ๋„ ์ธก์ • (Gini Impurity Measure) ์€ ๋ถ„๋ฅ˜๋ฌธ์ œ์—์„œ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ๊ฒฐ์ • ํŠธ๋ฆฌ (Decision Tree)์˜ ๋ถ„ํ•  ๊ธฐ๋ถ„ (Split Criteria) ์ค‘ ํ•˜๋‚˜์ด๋‹ค

  • Decision Tree์—์„œ ์‚ฌ์šฉ๋˜๋Š” class์˜ ๊ฐœ์ˆ˜์— ๋”ฐ๋ฅธ case๋“ค์˜ ๋ถˆ์ˆœํ•œ ์ •๋„ ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์ฒ™๋„์ด๋‹ค

  • ์ง€๋‹ˆ ๋ถˆ์ˆœ๋„๋Š” class์•ˆ์— ๋ถ„๋ฅ˜๊ฐ€ ์ž˜ ๋˜์–ด ์žˆ์œผ๋ฉด 0์ด ๋œ๋‹ค

    • ๋ถˆ์ˆœ๋ฌผ์—†์ด ๊นจ๋—ํ•˜๊ฒŒ ๋ถ„๋ฅ˜๊ฐ€ ๋˜์–ด์žˆ๋‹ค๋Š” ๋œป!

      • but, ์„ž์ด๊ฒŒ ๋˜๋ฉด 0๋ณด๋‹ค ํฐ ๊ฐ’์„ ๊ฐ–๊ฒŒ ๋œ๋‹ค (์ตœ๋Œ€๊ฐ’์€ 0.5)

๊ทœ์ œ ๋งค๊ฐœ๋ณ€์ˆ˜

  • ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๊ณผ๋Œ€ ์ ํ•ฉ์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด ํ•™์Šตํ•  ๋•Œ ๊ฒฐ์ • ํŠธ๋ฆฌ์˜ ์ž์œ ๋„ ๋ฅผ ์ œํ•œํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค

  • ๊ทœ์ œ ๋งค๊ฐœ๋ณ€์ˆ˜ ๋Š” ์‚ฌ์šฉํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋”ฐ๋ผ ๋‹ค๋ฅด์ง€๋งŒ, ๋ณดํ†ต ์ ์–ด๋„ decision tree์˜ ์ตœ๋Œ€ ๊นŠ์ด๋Š” ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋‹ค

    • Scikit learn์—์„œ๋Š” max_depft ๋งค๊ฐœ๋ณ€์ˆ˜๋กœ ์กฐ์ ˆํ•œ๋‹ค

      • default๋Š” ์ œํ•œ์ด ์—†๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•˜๋Š” None

      • max_depth ๋ฅผ ์ค„์ด๋ฉด ๋ชจ๋ธ์„ ๊ทœ์ œํ•˜๊ฒŒ ๋˜๊ณ , ๊ณผ๋Œ€ ์ ‘ํ•ฉ ์˜ ์œ„ํ—˜์ด ๊ฐ์†Œํ•œ๋‹ค!

2. Introducing MLOps

๋ฐœํ‘œ์ž: superb Ai ์ฐจ๋ฌธ์ˆ˜๋‹˜

2-2. ๋ฐœํ‘œ๋ฅผ ๋“ค์œผ๋ฉฐ ์ƒˆ๋กญ๊ฒŒ ์•Œ๊ฒŒ ๋œ ์ 

  • Launching is easy, Operation is hard

    • ์„œ๋น„์Šค๋ฅผ ๊ณ ๋„ํ™”ํ•˜๊ณ  ์šด์˜ํ•˜๋Š” ๊ฒƒ์ด ์–ด๋ ต๋‹ค

  • DevOps ์ฒ˜๋Ÿผ ๋‚˜์˜ค๊ฒŒ ๋œ MLOps

    • ์‹ค์ œ๋กœ ์„œ๋น„์Šคํ•˜๋Š”๋ฐ๊นŒ์ง€ ์‹œ๊ฐ„์ด ๋„ˆ๋ฌด ์˜ค๋ž˜๊ฑธ๋ฆฌ๋ฏ€๋กœ

    • ๊ฐœ๋ฐœ - ์šด์˜ ์„ ๊ฐ™์ด ํ•˜๊ธฐ ์œ„ํ•œ pipeline ์˜ ํ•„์š”์„ฑ์ด ๋Œ€๋‘๋˜์–ด ๋“ฑ์žฅ!

Last updated

Was this helpful?